Selectivity control during the single-step conversion of aliphatic carboxylic acids to linear olefins

J. H. Yeap; F. Héroguel; R. L. Shahab; B. Rozmyslowicz; M. H. Studer et al.

ACS Catalysis. 2018. Vol. 8, p. 10769-10773.

DOI : 10.1021/acscatal.8b03370.


An “ideal lignin” facilitates full biomass utilization

Y. Li; L. Shuai; H. Kim; A. H. Motagamwala; J. K. Mobley et al.

Science Advances. 2018. Vol. 4, num. 9, p. eaau2968.

DOI : 10.1126/sciadv.aau2968.


Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization

Y. M. Questell-Santiago; R. Zambrano-Varela; M. Talebi Amiri; J. S. Luterbacher

Nature Chemistry. 2018.

DOI : 10.1038/s41557-018-0134-4.


Slowing the Kinetics of Alumina Sol-Gel Chemistry for Controlled Catalyst Overcoating and Improved Catalyst Stability and Selectivity

Y.-P. Du; F. Héroguel; J. S. Luterbacher

Small. 2018. p. 1801733.

DOI : 10.1002/smll.201801733.


Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay

A. M. Bahmanpour; F. Héroguel; C. J. Baranowski; J. S. Luterbacher; O. Kröcher

Applied Catalysis A: General. 2018. Vol. 560, p. 165-170.

DOI : 10.1016/j.apcata.2018.05.006.


Simulation of Gas- and Liquid-Phase Layer-By-Layer Deposition of Metal Oxides by Coarse-Grained Modeling

K. S. Brown; C. Saggese; B. P. Le Monnier; F. Héroguel; J. S. Luterbacher

The Journal of Physical Chemistry C. 2018. Vol. 122, num. 12, p. 6713-6720.

DOI : 10.1021/acs.jpcc.8b00197.


Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium

R. L. Shahab; J. S. Luterbacher; S. Brethauer; M. H. Studer

Biotechnology and Bioengineering. 2018. Vol. 115, num. 5, p. 1207-1215.

DOI : 10.1002/bit.26541.


Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction

J. Gu; F. Héroguel; J. Luterbacher; X. Hu

Angewandte Chemie International Edition. 2018. Vol. 130, num. 11, p. 2993-2997.

DOI : 10.1002/anie.201713003.


Protection Group Effects During α,γ-Diol Lignin Stabilization Promote High-Selectivity Monomer Production

W. Lan; M. T. Amiri; C. M. Hunston; J. S. Luterbacher

Angewandte Chemie International Edition. 2018. Vol. 57, num. 5, p. 1356-1360.

DOI : 10.1002/anie.201710838.


Controlled deposition of titanium oxide overcoats by non-hydrolytic sol gel for improved catalyst selectivity and stability

F. Héroguel; L. Silvioli; Y.-P. Du; J. S. Luterbacher

Journal of Catalysis. 2018. Vol. 358, p. 50-61.

DOI : 10.1016/j.jcat.2017.11.023.



Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols

L. Z. Nikoshvili; A. V. Bykov; T. E. Khudyakova; T. Lagrange; F. Héroguel et al.

Industrial & Engineering Chemistry Research. 2017.

DOI : 10.1021/acs.iecr.7b01612.


Catalyst stabilization by stoichiometrically limited layer-by-layer overcoating in liquid media

F. Héroguel; B. P. Le Monnier; K. S. Brown; J. C. Siu; J. S. Luterbacher

Applied Catalysis B: Environmental. 2017. Vol. 218, p. 643-649.

DOI : 10.1016/j.apcatb.2017.07.006.


Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO

M. Schreier; F. Héroguel; L. Steier; S. Ahmad; J. S. Luterbacher et al.

Nature Energy. 2017. Vol. 2, num. 17087.

DOI : 10.1038/nenergy.2017.87.


Clean, cleaved surfaces of the photovoltaic perovskite

M. Kollár; L. Ćirić; J. H. Dil; A. Weber; S. Muff et al.

Scientific Reports. 2017. Vol. 7, p. 695.

DOI : 10.1038/s41598-017-00799-0.


Introduction to High Pressure CO2 and H2O Technologies in Sustainable Biomass Processing

Y. M. Questell-Santiago; J. Luterbacher

High Pressure Technologies in Biomass Conversion; UK: The Royal Society of Chemistry, 2017. p. 9-36. - 978-1-78262-485-1.

DOI : 10.1039/9781782626763-00009.



The influence of interunit carbon–carbon linkages during lignin upgrading

L. Shuai; M. Talebi Amiri; J. Luterbacher

Current Opinion in Green and Sustainable Chemistry. 2016. Vol. 2, p. 59-63.

DOI : 10.1016/j.cogsc.2016.10.001.


Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization

L. Shuai; M. T. Amiri; Y. M. Questell-Santiago; F. Heroguel; Y. Li et al.

Science. 2016. Vol. 354, num. 6310, p. 329-333.

DOI : 10.1126/science.aaf7810.


A mild biomass pretreatment using gamma-valerolactone for concentrated sugar production

L. Shuai; Y. M. Questell-Santiago; J. S. Luterbacher

Green Chemistry. 2016. Vol. 18, num. 4, p. 937-943.

DOI : 10.1039/c5gc02489g.


Organic Solvent Effects in Biomass Conversion Reactions

L. Shuai; J. Luterbacher

Chemsuschem. 2016. Vol. 9, num. 2, p. 133-155.

DOI : 10.1002/cssc.201501148.



Improving Heterogeneous Catalyst Stability for Liquid-phase Biomass Conversion and Reforming

F. E. Héroguel; B. Rozmysłowicz; J. Luterbacher

Chimia. 2015. Vol. 69, num. 10, p. 582-591.

DOI : 10.2533/chimia.2015.582.


Hydrothermally-treated Na-X as efficient adsorbents for butadiene removal

G. B. Baur; F. E. Héroguel; J. Spring; J. Luterbacher; L. Kiwi

The Chemical Engineering Journal. 2015. Vol. 288, num. 19-27.

DOI : 10.1016/j.cej.2015.11.096.



Production of monomers from lignin during depolymerisation of lignocellulose-containing composition

J. S. Luterbacher; L. Shuai


Patent number(s) :

Publications before EPFL


Lignin monomer production integrated into the γ-valerolactone sugar platform

J. S. Luterbacher; A. Azarpira; A. H. Motagamwala; F. Lu; J. Ralph et al.

Energy & Environmental Science. 2015.

DOI : 10.1039/C5EE01322D.

Process systems engineering studies for the synthesis of catalytic biomass-to-fuels strategies

J. Han; S. Murat Sen; J. S. Luterbacher; D. M. Alonso; J. A. Dumesic et al.

Computers & Chemical Engineering. 2015.

DOI : 10.1016/j.compchemeng.2015.04.007.

Solvent-Enabled Nonenyzmatic Sugar Production from Biomass for Chemical and Biological Upgrading

J. S. Luterbacher; D. M. Alonso; J. M. Rand; Y. M. Questell-Santiago; J. H. Yeap et al.

ChemSusChem. 2015.

DOI : 10.1002/cssc.201403418.

A lignocellulosic ethanol strategy via nonenzymatic sugar production: Process synthesis and analysis

J. Han; J. S. Luterbacher; D. M. Alonso; J. A. Dumesic; C. T. Maravelias

Bioresource Technology. 2015.

DOI : 10.1016/j.biortech.2015.01.135.

Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass

J. S. Luterbacher; J. M. Moran-Mirabal; E. W. Burkholder; L. P. Walker

Biotechnology and Bioengineering. 2015.

DOI : 10.1002/bit.25328.

Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose

J. S. Luterbacher; J. M. Moran-Mirabal; E. W. Burkholder; L. P. Walker

Biotechnology and Bioengineering. 2015.

DOI : 10.1002/bit.25329.


Targeted chemical upgrading of lignocellulosic biomass to platform molecules

J. S. Luterbacher; D. Martin Alonso; J. A. Dumesic

Green Chemistry. 2014.

DOI : 10.1039/C4GC01160K.

Effects of γ-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides

M. A. Mellmer; D. Martin Alonso; J. S. Luterbacher; J. M. R. Gallo; J. A. Dumesic

Green Chemistry. 2014.

DOI : 10.1039/C4GC01768D.

Solvent Effects in Acid-Catalyzed Biomass Conversion Reactions

M. A. Mellmer; C. Sener; J. M. R. Gallo; J. S. Luterbacher; D. M. Alonso et al.

Angewandte Chemie International Edition. 2014.

DOI : 10.1002/anie.201408359.

Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents

R. Weingarten; A. Rodriguez-Beuerman; F. Cao; J. S. Luterbacher; D. M. Alonso et al.

ChemCatChem. 2014.

DOI : 10.1002/cctc.201402299.

Nonenzymatic Sugar Production from Biomass Using Biomass-Derived gamma-Valerolactone

J. S. Luterbacher; J. M. Rand; D. M. Alonso; J. Han; J. T. Youngquist et al.

Science. 2014.

DOI : 10.1126/science.1246748.


Two-temperature stage biphasic CO2-H2O pretreatment of lignocellulosic biomass at high solid loadings

J. S. Luterbacher; J. W. Tester; L. P. Walker

Biotechnology and Bioengineering. 2012.

DOI : 10.1002/bit.24417.

Producing concentrated solutions of monosaccharides using biphasic CO2–H2O mixtures

J. S. Luterbacher; Q. Chew; Y. Li; J. W. Tester; L. P. Walker

Energy & Environmental Science. 2012.

DOI : 10.1039/c2ee02913h.

Observing and modeling BMCC degradation by commercial cellulase cocktails with fluorescently labeled

J. S. Luterbacher; L. P. Walker; J. M. Moran-Mirabal

Biotechnology and Bioengineering. 2012.

DOI : 10.1002/bit.24597.

A pore-hindered diffusion and reaction model can help explain the importance of pore size distribution in enzymatic hydrolysis of biomass

J. S. Luterbacher; J.-Y. Parlange; L. P. Walker

Biotechnology and Bioengineering. 2012.

DOI : 10.1002/bit.24614.


Observing Thermobifida fusca cellulase binding to pretreated wood particles using time-lapse confocal laser scanning microscopy

P. Zhu; J. M. Moran-Mirabal; J. S. Luterbacher; L. P. Walker; H. G. Craighead

Cellulose. 2011.

DOI : 10.1007/s10570-011-9506-2.


High-solids biphasic CO2-H2O pretreatment of lignocellulosic biomass

J. S. Luterbacher; J. W. Tester; L. P. Walker

Biotechnology and Bioengineering. 2010.

DOI : 10.1002/bit.22823.


Hydrothermal Gasification of Waste Biomass: Process Design and Life Cycle Asessment

J. S. Luterbacher; M. Fröling; F. Vogel; F. Maréchal; J. W. Tester

Environmental Science & Technology. 2009.

DOI : 10.1021/es801532f.